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Today’s Agenda

1. Theory: Bellman Equation, example of a consumption-saving program
- Recursive form of the deterministic problem
- Markov chains and stochastic dynamic programming
- Contraction mapping theorem and backward iteration

2. Computational: Value Function Iteration
- On-grid Value Function Iteration
- Off-grid VFI & Euler errors

⇒ Pseudo-code of the algorithm (whiteboard)
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A consumption saving program, without uncertainty

For the PS, you will be asked to solve a stochastic neoclassical growth model. In this tutorial, we
will take the example of a consumption (ct ) saving (at+1) program in partial eq. You will have to
think carefully about the differences between the two models for the problem set. . .

Challenge: Find the sequence of {ct ,at+1}∀s≥t that solves:

Vt (at ) ≡ max
{cs,as+1}∀s≥t

∑
s≥t

βs−tu(cs) s.t.


cs + as+1 = (1 + rs)as + ȳ ∀s ≥ t

as ≥ 0 ∀s ≥ t
at is given

Issue: This problem is subject to the curse of dimensionality. . .

→ How would you reduce its dimensionality to find a global solution?
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as ≥ 0 ∀s ≥ t
at is given

Issue: This problem is subject to the curse of dimensionality. . .

→ How would you reduce its dimensionality to find a global solution?

Quantitative Macroeconomics I – Tutorial Session 3 2/8



Dimensionality reduction of the problem

1/ Algebra: reduce the number of control variables using the budget constraint

Vt (at ) = max
{as+1}∀s≥t

∑
s≥t

βs−tu ((1 + rs)as + ȳ − as+1) s.t. as+1 ≥ 0 ∀s ≥ t

2/ We can write the problem in the state space (recursive form)

Vt (at ) = max
at+1

{
u(ct ) + β

[
max

{as+1}∀s≥t+1

u(ct+1) + ∑
s≥t+1

βs−(t+1)u(cs)
]

︸ ︷︷ ︸
Vt+1(at+1)

}

s.t. ct = (1 + rt )at + ȳ − at+1 and at+1 ≥ 0
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The deterministic Bellman Equation
Bellman Equation reduces the problem to ”today’s choice” given ”tomorrow” optimal

Vt (at ) = T {Vt+1}(at )︸ ︷︷ ︸
Bellman operator

= max
at+1

u ((1 + r )at + ȳ − at+1) + βVt+1(at+1) s.t. at+1 ≥ 0

1. Problem is to find the optimal policy function at+1 = gt (at ), instead of a sequence
⇒ Solution to the curse of dimensionality!

2. Vt (at ) is the lifetime discounted sum of utility, given states and with optimal policies

3. at+1 ∈ Γ(at ) is the Choice correspondence

4. The Bellman Equation maps a function into a function. It is a functional equation
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Adding uncertainty: Markov chains

Uncertainty is a key feature of economic behavior, often modeled using Markov processes
↪→ In our example, take households’ earning, subject to uncertainty ω ∼ AR(1)

1/ Markov processes have desirable properties for dynamic programming
(a) Memoryless: ”Future states depend only on the current state”
(b) Stationary transitions: Transition probabilities are time-invariant
(c) Discretization: Approximate continuous processes by markov chains (Tauchen,

Rowenhorst)

2/ Markov chains are defined by
- A discrete set of states Ω, with a probability transition matrix Π = (πω,ω′)∀ω,ω′∈Ω2

- An initial distribution µ0
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Stochastic Bellman Equation

Earnings are stochastic→ replace ȳ by ω. The Bellman Equation becomes

Vt (ωt ,at ) = T {Vt+1}(ωt ,at )

= max
at+1

u ((1 + r )at + ωt − at+1) + βEωt+1|ωt
Vt+1(ωt+1,at+1)

= max
at+1

u ((1 + r )at + ωt − at+1) + β ∑
ωt+1

πωt ,ωt+1Vt+1(ωt+1,at+1)

s.t. at+1 ≥ 0 ∀ ωt ,at ∈ Ω×R+
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Two useful applications of the Bellman Equation
1. At steady state, the Value Function is the unique1 fixed point to the Bellman operator

CMT : V ∗ s.t. V ∗(ω,a) = T {V ∗}(ω,a) = max
a′

u
(
(1 + r )a + ω− a′

)
+ βEω′|ωV ∗(ω′,a′)

2. Backward induction (in finite time):

1/ Start from a terminal condition VT+1(aT+1) e.g VT+1(aT+1) = 0 if T is large enough

2/ Given a sequence of ωt , the Value function at time t < T + 1 is obtained by applying the
Bellman Operator

Vt (ωt ,at ) = T {Vt+1}(ωt ,at ) ∀at

⇒ We can find the sequence of optimal policies functions {a′t (at )}T
t=0

1By the application of the contraction mapping theorem. See the lecture slides.
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Value Function Iteration
How to find the value function and policy functions at steady state?

a

Value given ω

V 0

- Guess an initial value function V 0(ω,a)

- New guess: V 1(ω,a) = T {V 0}(ω,a)

- Continue: V 2(ω,a) = T {V 1}(ω,a)

- Again: V 3(ω,a) = T {V 2}(ω,a)

. . . Continue until ”convergence” btw. functions

‖V n − V (n−1)‖ ≤ ε

=⇒ Let’s do a pseudo-code of the algorithm together!
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How backward iteration and steady state are connected?

On the board explanation. . .
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