

Quantitative Macroeconomics I Bootcamp 2: Shooting Method

Grégoire Sempé

gregoire.sempe@psemail.eu

Paris School of Economics, Université Paris 1 Panthéon-Sorbonne

September 22, 2025

I thank Tobias Broer, Eustache Elina and Moritz Scheidenberger for useful materials and discussions.

QM I - Shooting Method - G. Sempé 0/

Today's Agenda

- 1/ Framework: Neoclassical Growth Model
 - Model presentation & main equations
 - System of first difference equations & phase diagram
- 2/ How to solve the model using a shooting algorithm?
- ⇒ First problem set (ungraded) on shooting method for next week!

The Ramsey Growth Model

- The Ramsey model is the basis of all modern macroeconomic models, and is simple!
 - Representative agent model with endogenous saving rate
 - Perfect competition & no friction: decentralized solution = social planner solution
 - Consider a discrete time version $t \in \mathbb{N}_+$
 - Parameters: $\alpha \in (0,1), \beta \in (0,1), \delta \in (0,1), \sigma \in \mathbb{R}_+ \backslash \{1\}$
- Perfectly competitive firm produces a generic good from capital $f(k) = k^{\alpha}$
- Representative household maximizes its flows of utility over time: $\sum_{t=0}^{\infty} \beta^t u(c_t)$

$$u(c_t) = \frac{c_t^{1-\sigma}}{1-\sigma}$$

- Resource constraint: $c_t + k_{t+1} = f(k_t) + (1 \delta)k_t$
- Two versions: finite horizon $T < \infty$ or infinite horizon $T = \infty$

Check the main slides of the course for more details...

$$V_0(k_0) = \max_{\{c_t, k_{t+1}\}_{\forall t \geq 0}} \sum_{t \geq 0} \beta^t u(c_t) \quad \text{s.t.} \begin{cases} c_t + k_{t+1} = f(k_t) + (1 - \delta)k_t & \forall t \geq 0 \\ k_0 \text{ given} \\ c_t \geq 0, k_{t+1} \geq 0 & \forall t \geq 0 \end{cases}$$

$$V_{0}(k_{0}) = \max_{\{c_{t}, k_{t+1}\}_{\forall t \geq 0}} \sum_{t \geq 0} \beta^{t} u(c_{t}) \quad \text{s.t.} \begin{cases} c_{t} + k_{t+1} = f(k_{t}) + (1 - \delta)k_{t} & \forall t \geq 0 \\ k_{0} \text{ given} \\ c_{t} \geq 0, k_{t+1} \geq 0 & \forall t \geq 0 \end{cases}$$

• k_t is a state variable \longrightarrow results from past decisions & law of motion

$$V_{0}(k_{0}) = \max_{\{c_{t}, k_{t+1}\}_{\forall t \geq 0}} \sum_{t \geq 0} \beta^{t} u(c_{t}) \quad \text{s.t.} \begin{cases} c_{t} + k_{t+1} = f(k_{t}) + (1 - \delta)k_{t} & \forall t \geq 0 \\ k_{0} \text{ given} \\ c_{t} \geq 0, k_{t+1} \geq 0 & \forall t \geq 0 \end{cases}$$

- k_t is a state variable \longrightarrow results from past decisions & law of motion
- (c_t, k_{t+1}) are control variables \longrightarrow decisions at each t
 - → Chosen at each period by the household, given the state and feasibility constraints
 - → They control for the evolution of the state variable

$$V_0(k_0) = \max_{\{c_t, k_{t+1}\}_{\forall t \geq 0}} \quad \sum_{t \geq 0} \beta^t u(c_t) \quad \text{s.t.} \begin{cases} c_t + k_{t+1} = f(k_t) + (1 - \delta)k_t & \forall t \geq 0 \\ k_0 \text{ given} \\ c_t \geq 0, k_{t+1} \geq 0 & \forall t \geq 0 \end{cases}$$

- k_t is a state variable \longrightarrow results from past decisions & law of motion
- (c_t, k_{t+1}) are control variables \longrightarrow decisions at each t
 - → Chosen at each period by the household, given the state and feasibility constraints
 - → They control for the evolution of the state variable
- $V_0(k_0)$ is the value function of the household at time 0
 - \hookrightarrow Discounted sum of utility streams, given optimal sequence of controls and state k_0

How to solve this problem? \Rightarrow let's mix analytical + computational methods \dots

How to solve this problem? \Rightarrow let's mix analytical + computational methods \dots

1. This problem can be reduced to a **constrained** system of difference equations

{Euler Equation, Resource Constraint} s.t. $\{c \ge 0, k \ge 0\}$ and k_0 given

How to solve this problem? \Rightarrow let's mix analytical + computational methods ...

1. This problem can be reduced to a **constrained** system of difference equations

```
{Euler Equation, Resource Constraint} s.t. \{c \ge 0, k \ge 0\} and k_0 given \{c_{t+1} = g_1(k_t, c_t), k_{t+1} = g_2(k_t, c_t)\} s.t. \{c \ge 0, k \ge 0\} and k_0 given
```


How to solve this problem? \Rightarrow let's mix analytical + computational methods ...

1. This problem can be reduced to a **constrained** system of difference equations

$$\begin{aligned} & \{ \text{Euler Equation, Resource Constraint} \} & \text{ s.t. } & \{ c \geq 0, k \geq 0 \} & \text{ and } & k_0 \text{ given} \\ & \{ c_{t+1} = g_1(k_t, c_t), k_{t+1} = g_2(k_t, c_t) \} & \text{ s.t. } & \{ c \geq 0, k \geq 0 \} & \text{ and } & k_0 \text{ given} \end{aligned}$$

2. Get a sequence $\{c_{t+1}, k_{t+1}\}_{\forall t \leq T}$ that depends on $\{k_0, c_0\}$

How to solve this problem? \Rightarrow let's mix analytical + computational methods ...

1. This problem can be reduced to a **constrained** system of difference equations

{Euler Equation, Resource Constraint} s.t.
$$\{c \ge 0, k \ge 0\}$$
 and k_0 given $\{c_{t+1} = g_1(k_t, c_t), k_{t+1} = g_2(k_t, c_t)\}$ s.t. $\{c \ge 0, k \ge 0\}$ and k_0 given

- 2. Get a sequence $\{c_{t+1}, k_{t+1}\}_{\forall t \leq T}$ that depends on $\{k_0, c_0\}$
- 3. Shooting: Find c_0 such that the system meets a terminal condition

Infinite time case (truncated to T)

Finite time case

How to solve this problem? \Rightarrow let's mix analytical + computational methods ...

1. This problem can be reduced to a **constrained** system of difference equations

$$\begin{aligned} & \{ \text{Euler Equation, Resource Constraint} \} & \text{ s.t. } & \{ c \geq 0, k \geq 0 \} & \text{ and } & k_0 \text{ given} \\ & \{ c_{t+1} = g_1(k_t, c_t), k_{t+1} = g_2(k_t, c_t) \} & \text{ s.t. } & \{ c \geq 0, k \geq 0 \} & \text{ and } & k_0 \text{ given} \end{aligned}$$

- 2. Get a sequence $\{c_{t+1}, k_{t+1}\}_{\forall t \leq T}$ that depends on $\{k_0, c_0\}$
- 3. Shooting: Find c_0 such that the system meets a terminal condition

Infinite time case (truncated to T)

$$k_{T+1} = k_T$$
 and $c_{T+1} = c_T$

Need T to be large enough! ($\lim_{t\to\infty} \beta^t = 0$)

Finite time case

How to solve this problem? \Rightarrow let's mix analytical + computational methods ...

1. This problem can be reduced to a **constrained** system of difference equations

{Euler Equation, Resource Constraint} s.t.
$$\{c \ge 0, k \ge 0\}$$
 and k_0 given $\{c_{t+1} = g_1(k_t, c_t), k_{t+1} = g_2(k_t, c_t)\}$ s.t. $\{c \ge 0, k \ge 0\}$ and k_0 given

- 2. Get a sequence $\{c_{t+1}, k_{t+1}\}_{\forall t \leq T}$ that depends on $\{k_0, c_0\}$
- 3. Shooting: Find c_0 such that the system meets a terminal condition

Infinite time case (truncated to T)

$$k_{T+1} = k_T$$
 and $c_{T+1} = c_T$

Need T to be large enough! ($\lim_{t\to\infty} \beta^t = 0$)

Finite time case
$$k_{T+1} = 0$$

OM I - Shooting Method - G. Sempé

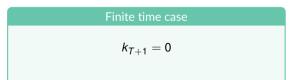
How to solve this problem? \Rightarrow let's mix analytical + computational methods . . .

1. This problem can be reduced to a **constrained** system of difference equations

$$\begin{aligned} & \{ \text{Euler Equation, Resource Constraint} \} & \text{ s.t. } & \{ c \geq 0, k \geq 0 \} & \text{ and } & k_0 \text{ given} \\ & \{ c_{t+1} = g_1(k_t, c_t), k_{t+1} = g_2(k_t, c_t) \} & \text{ s.t. } & \{ c \geq 0, k \geq 0 \} & \text{ and } & k_0 \text{ given} \end{aligned}$$

- 2. Get a sequence $\{c_{t+1}, k_{t+1}\}_{\forall t \leq T}$ that depends on $\{k_0, c_0\}$
- 3. Shooting: Find c_0 such that the system meets a terminal condition

Infinite time case (truncated to T) $k_{T+1}=k_T \quad \text{and} \quad c_{T+1}=c_T$ Need T to be large enough! ($\lim_{t \to \infty} \beta^t=0$)



Challenge: how to find the right c_0 ? Objective of this week!

Deriving the system of first-difference equations

PARIS SCHOOL OF ECONOMIC

1. Set up the Lagrangian:

$$\mathcal{L} = \sum_{t=0}^{T} \beta^{t} \Big[u(c_{t}) + \lambda_{t} \big(f(k_{t}) + (1-\delta)k_{t} - c_{t} - k_{t+1} \big) \Big].$$

Deriving the system of first-difference equations

1. Set up the Lagrangian:

$$\mathcal{L} = \sum_{t=0}^{T} \beta^{t} \Big[u(c_{t}) + \lambda_{t} \big(f(k_{t}) + (1-\delta)k_{t} - c_{t} - k_{t+1} \big) \Big].$$

2. FOCs:

$$\frac{\partial \mathcal{L}}{\partial c_t} = \beta^t (u'(c_t) - \lambda_t) = 0 \qquad \Longrightarrow \quad u'(c_t) = \lambda_t,$$

$$\frac{\partial \mathcal{L}}{\partial k_{t+1}} = -\beta^t \lambda_t + \beta^{t+1} \lambda_{t+1} (f'(k_{t+1}) + 1 - \delta) = 0 \qquad \Longrightarrow \quad \lambda_t = \beta \lambda_{t+1} (f'(k_{t+1}) + 1 - \delta).$$

Deriving the system of first-difference equations

1. Set up the Lagrangian:

$$\mathcal{L} = \sum_{t=0}^{T} \beta^{t} \Big[u(c_{t}) + \lambda_{t} \big(f(k_{t}) + (1-\delta)k_{t} - c_{t} - k_{t+1} \big) \Big].$$

2. FOCs:

$$\begin{split} \frac{\partial \mathcal{L}}{\partial c_t} &= \beta^t \big(u'(c_t) - \lambda_t \big) = 0 \\ & \Longrightarrow \quad u'(c_t) = \lambda_t, \\ \frac{\partial \mathcal{L}}{\partial k_{t+1}} &= -\beta^t \lambda_t + \beta^{t+1} \lambda_{t+1} \big(f'(k_{t+1}) + 1 - \delta \big) = 0 \\ & \Longrightarrow \quad \lambda_t = \beta \lambda_{t+1} \big(f'(k_{t+1}) + 1 - \delta \big). \end{split}$$

3. Combine the two FOCs to get the Euler equation. It yields the following system of difference equations:

$\forall t \in \{1, T\} \quad \begin{cases} c_{t+1} = (u')^{-1} \left(\frac{u'(c_t)}{\beta \left(f'(k_{t+1}) + 1 - \delta \right)} \right) \\ k_{t+1} = f(k_t) + (1 - \delta)k_t - c_t \end{cases} \quad \text{and} \quad \begin{cases} k_0 \text{ given} \\ \text{Terminal condition holds at } T \end{cases}$

Coding the system in Matlab

From the first exercise, you should should know how to code a forward simulation of the system in Matlab...

 \Rightarrow Let's do it on the whiteboard!

Use the structure of the problem to inform your choice of c_0

- 1. Unique steady state and saddle-path stability \Rightarrow unique solution within boundaries
- 2. Guess c_0 , project the system forward until the boundary condition is respected at time T+1 intuition

OM I - Shooting Method - G. Sempé

Use the structure of the problem to inform your choice of c_0

- 1. Unique steady state and saddle-path stability \Rightarrow unique solution within boundaries
- 2. Guess c_0 , project the system forward until the boundary condition is respected at time T+1 intuition
 - If $k_{T+1} < k_{T+1}^{\text{boundary}}$, then savings were too low initially \rightarrow decrease c_0
 - If $k_{T+1} > k_{T+1}^{\text{boundary}}$, then savings were too high initially \rightarrow increase c_0

Use the structure of the problem to inform your choice of c_0

- 1. Unique steady state and saddle-path stability \Rightarrow unique solution within boundaries
- 2. Guess c_0 , project the system forward until the boundary condition is respected at time T+1 binuition
 - If $k_{T+1} < k_{T+1}^{\text{boundary}}$, then savings were too low initially \rightarrow decrease c_0
 - If $k_{T+1} > k_{T+1}^{\text{boundary}}$, then savings were too high initially \rightarrow increase c_0
- ⇒ Rootfinding on the boundary condition error (e.g. bisection)!

$$h(c_0) = k_{T+1}(c_0) - k_{T+1}^{boundary}$$
 Scaled error: $\theta(c_0) = h(c_0)/\bar{k}$

Use the structure of the problem to inform your choice of c_0

- 1. Unique steady state and saddle-path stability ⇒ unique solution within boundaries
- 2. Guess c_0 , project the system forward until the boundary condition is respected at time T+1 intuition
 - If $k_{T+1} < k_{T+1}^{\text{boundary}}$, then savings were too low initially o decrease c_0
 - If $k_{T+1} > k_{T+1}^{\text{boundary}}$, then savings were too high initially \rightarrow increase c_0
- ⇒ Rootfinding on the boundary condition error (e.g. bisection)!

$$h(c_0) = k_{T+1}(c_0) - k_{T+1}^{\text{boundary}}$$
 Scaled error: $\theta(c_0) = h(c_0)/\bar{k}$

Be careful: Account for feasibility constraints, at each t: c_t , $k_t \ge 0$, update the h function accordingly!

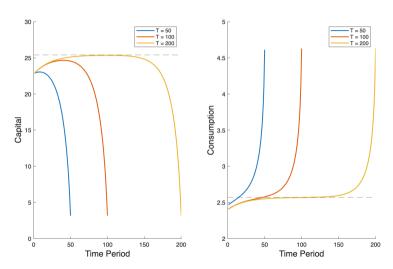
Any idea? \rightarrow update directly the error with the right sign when a constraint is violated!

Example – Expected Results when *T* is finite

What should be the path of capital over time? If *T* is small? If *T* is large?

Example – Expected Results when *T* is finite

What should be the path of capital over time? If T is small? If T is large?



Phase diagram

