

Quantitative Macroeconomics I Tutorial Session 1

Grégoire Sempé gregoire.sempe@psemail.eu

Paris School of Economics, Université Paris 1 Panthéon-Sorbonne

September 27, 2024

Today's Agenda

- 1/ Framework: Neoclassical Growth Model
 - Model presentation & main equations
 - System of difference equations & phase diagram
- 2/ How to solve the model using a shooting algorithm?
- ⇒ First problem set to be solved for October 3, noon!

Link to submit your Problem Set: Google Classroom

The Ramsey Growth Model

- The Ramsey model is the basis of all modern macroeconomic models, and is simple!
 - Representative agent model with endogenous saving rate
 - Perfect competition & no friction: decentralized solution = social planner solution
 - Consider a discrete time version $t \in \mathbb{N}_+$
 - Parameters: $\alpha \in (0, 1), \beta \in (0, 1), \delta \in (0, 1), \sigma \in \mathbb{R}_+ \setminus \{1\}$
- Perfectly competitive firm produces a generic good from capital $f(k) = k^{\alpha}$
- Representative household maximizes its flows of utility over time: $\sum_{t=0}^{\infty} \beta^t u(c_t)$

$$u(c_t) = \frac{c_t^{1-\sigma}}{1-\sigma}$$

• Resource constraint: $c_t + k_{t+1} = f(k_t) + (1 - \delta)k_t$

$$V_0 = \max_{\{c_t, k_{t+1}\}_{orall t \geq 0}} \sum_{t \geq 0} \beta^t u(c_t)$$
 s.t. $egin{cases} c_t + k_{t+1} = f(k_t) + (1-\delta)k_t & orall t \geq 0 \ k_0 ext{ given} \ c_t \geq 0, k_{t+1} \geq 0 \end{cases}$ $orall t \geq 0$

$$V_0 = \max_{\{c_t, k_{t+1}\}_{\forall t \geq 0}} \quad \sum_{t \geq 0} \beta^t u(c_t) \quad \text{s.t.} \begin{cases} c_t + k_{t+1} = f(k_t) + (1-\delta)k_t & \forall t \geq 0 \\ k_0 \text{ given} \\ c_t \geq 0, k_{t+1} \geq 0 & \forall t \geq 0 \end{cases}$$

• k_t is a state variable \longrightarrow results from past decisions & law of motion

$$V_0 = \max_{\{c_t, k_{t+1}\}_{\forall t \geq 0}} \quad \sum_{t \geq 0} \beta^t u(c_t) \quad \text{s.t.} \begin{cases} c_t + k_{t+1} = f(k_t) + (1-\delta)k_t & \forall t \geq 0 \\ k_0 \text{ given} \\ c_t \geq 0, k_{t+1} \geq 0 & \forall t \geq 0 \end{cases}$$

- k_t is a state variable \longrightarrow results from past decisions & law of motion
- (c_t, k_{t+1}) are control variables \longrightarrow decisions at each t
 - \hookrightarrow Chosen at each period by the household, given the state and feasibility constraints
 - \rightarrow They <u>control</u> for the evolution of the state variable

$$V_0 = \max_{\{c_t, k_{t+1}\}_{\forall t \geq 0}} \quad \sum_{t \geq 0} \beta^t u(c_t) \quad \text{s.t.} \begin{cases} c_t + k_{t+1} = f(k_t) + (1 - \delta)k_t & \forall t \geq 0 \\ k_0 \text{ given} \\ c_t \geq 0, k_{t+1} \geq 0 & \forall t \geq 0 \end{cases}$$

- k_l is a state variable \longrightarrow results from past decisions & law of motion
- (c_t, k_{t+1}) are control variables \longrightarrow decisions at each t

 - → They <u>control</u> for the evolution of the state variable
- V_0 is the value function of the household at time 0
 - → Discounted sum of utility streams, given optimal sequence of controls

How to solve this problem? \Rightarrow let's mix analytical + computational methods ...

Quantitative Macroeconomics I - Tutorial Session 1

How to solve this problem? \Rightarrow let's mix analytical + computational methods ...

1. This problem can be reduced to a constrained system of difference equations

{Euler Equation, Resource Constraint} s.t. $\{c \ge 0, k \ge 0\}$ and k_0 given

How to solve this problem? \Rightarrow let's mix analytical + computational methods ...

1. This problem can be reduced to a constrained system of difference equations

{Euler Equation, Resource Constraint} s.t. $\{c \ge 0, k \ge 0\}$ and k_0 given

 $\{c_{t+1} = g_1(k_t, c_t), k_{t+1} = g_2(k_t, c_t)\} \quad \text{s.t.} \quad \{c \geq 0, k \geq 0\} \quad \text{and} \quad k_0 \text{ given}$

How to solve this problem? \Rightarrow let's mix analytical + computational methods ...

1. This problem can be reduced to a constrained system of difference equations

{Euler Equation, Resource Constraint} s.t.
$$\{c \ge 0, k \ge 0\}$$
 and k_0 given $\{c_{t+1} = g_1(k_t, c_t), k_{t+1} = g_2(k_t, c_t)\}$ s.t. $\{c \ge 0, k \ge 0\}$ and k_0 given

2. Get a sequence $\{c_{t+1}, k_{t+1}\}_{\forall t \leq T}$ that depends on $\{k_0, c_0\}$

How to solve this problem? \Rightarrow let's mix analytical + computational methods ...

1. This problem can be reduced to a constrained system of difference equations

{Euler Equation, Resource Constraint} s.t.
$$\{c \ge 0, k \ge 0\}$$
 and k_0 given $\{c_{t+1} = g_1(k_t, c_t), k_{t+1} = g_2(k_t, c_t)\}$ s.t. $\{c \ge 0, k \ge 0\}$ and k_0 given

- 2. Get a sequence $\{c_{t+1}, k_{t+1}\}_{\forall t \leq T}$ that depends on $\{k_0, c_0\}$
- 3. Shooting: Find c_0 such that for ${\it T}$ sufficiently large, the system reaches a steady state

$$k_{T+1} = k_T$$
 and $c_{T+1} = c_T$

 \Rightarrow Challenge: how to find the right c_0 ? Objective of your first problem set!

A system of difference equations

on the board explanation...

Get the sequence

on the board explanation...

Informed shooting: use the structure of the problem to inform your choice of c_0

- 1. Unique steady state and saddle-path stability \Rightarrow only 1 solution within boundaries
- 2. Guess any c_0 , project the system forward until boundary conditions are met \bullet intuition

ightarrow Try it at home, but it is not part of the first problem set!

Quantitative Macroeconomics I - Tutorial Session 1

Informed shooting: use the structure of the problem to inform your choice of c_0

- 1. Unique steady state and saddle-path stability \Rightarrow only 1 solution within boundaries
- 2. Guess any c_0 , project the system forward until boundary conditions are met \bullet intuition
 - \hookrightarrow If $c_T < 0$, then savings were too high initially \to increase c_0
 - \hookrightarrow If $k_T < 0 \Rightarrow$ decrease c_0
- → Try it at home, but it is not part of the first problem set!

Informed shooting: use the structure of the problem to inform your choice of c_0

- 1. Unique steady state and saddle-path stability \Rightarrow only 1 solution within boundaries
- 2. Guess any c_0 , project the system forward until boundary conditions are met \bullet intuition
 - \hookrightarrow If $c_T < 0$, then savings were too high initially \to increase c_0
 - \hookrightarrow If $k_T < 0 \Rightarrow$ decrease c_0
- → Try it at home, but it is not part of the first problem set!

Agnostic shooting: no information on the system, use rootfinding to find the right c_0

Informed shooting: use the structure of the problem to inform your choice of c_0

- 1. Unique steady state and saddle-path stability \Rightarrow only 1 solution within boundaries
- 2. Guess any c_0 , project the system forward until boundary conditions are met \cdot intuition
 - \hookrightarrow If $c_T < 0$, then savings were too high initially \to increase c_0
 - \hookrightarrow If $k_T < 0 \Rightarrow$ decrease c_0
- → Try it at home, but it is not part of the first problem set!

Agnostic shooting: no information on the system, use rootfinding to find the right c_0

E.g Bisection: start with $c_0 = 0$ and $c_0 =$ high enough, check if $c_T = c_{T-1}$ and update depending on the sign of the error.

Informed shooting: use the structure of the problem to inform your choice of c_0

- 1. Unique steady state and saddle-path stability \Rightarrow only 1 solution within boundaries
- 2. Guess any c_0 , project the system forward until boundary conditions are met \cdot intuition
 - \hookrightarrow If $c_T < 0$, then savings were too high initially \to increase c_0
 - \hookrightarrow If $k_T < 0 \Rightarrow$ decrease c_0
- → Try it at home, but it is not part of the first problem set!

Agnostic shooting: no information on the system, use rootfinding to find the right c_0

E.g Bisection: start with $c_0 = 0$ and $c_0 =$ high enough, check if $c_T = c_{T-1}$ and update depending on the sign of the error.

Phase diagram



